On linearization and connection coefficients for generalized Hermite polynomials
نویسندگان
چکیده
We consider the problem of finding explicit formulae, recurrence relations and sign properties for both connection and linearization coefficients for generalized Hermite polynomials. The most computations are carried out by the computer algebra system Maple using appropriate algorithms.
منابع مشابه
General linearization formulae for products of continuous hypergeometric-type polynomials
The linearization of products of wavefunctions of exactly solvable potentials often reduces to the generalized linearization problem for hypergeometric polynomials (HPs) of a continuous variable, which consists of the expansion of the product of two arbitrary HPs in series of an orthogonal HP set. Here, this problem is algebraically solved directly in terms of the coefficients of the second-ord...
متن کاملLinearization coefficients for orthogonal polynomials using stochastic processes
ABSTRACT. Given a basis for a polynomial ring, the coefficients in the expansion of a product of some of its elements in terms of this basis are called linearization coefficients. These coefficients have combinatorial significance for many classical families of orthogonal polynomials. Starting with a stochastic process and using the stochastic measures machinery introduced by Rota and Wallstrom...
متن کاملOperational matrices with respect to Hermite polynomials and their applications in solving linear differential equations with variable coefficients
In this paper, a new and efficient approach is applied for numerical approximation of the linear differential equations with variable coeffcients based on operational matrices with respect to Hermite polynomials. Explicit formulae which express the Hermite expansion coeffcients for the moments of derivatives of any differentiable function in terms of the original expansion coefficients of the f...
متن کاملWeighted Derangements and the Linearization Coefficients of Orthogonal Sheffer Polynomials
The present paper is devoted to a systematic study of the combinatorial interpretations of the moments and the linearization coefficients of the orthogonal Sheffer polynomials, i.e., Hermite, Charlier, Laguerre, Meixner and Meixner-Pollaczek polynomials. In particular, we show that Viennot's combinatorial interpretations of the moments can be derived directly from their classical analytical exp...
متن کاملA Combinatorial Formula for the Linearization Coefficients of General Sheffer Polynomials
We prove a formula for the linearization coefficients of the general Sheffer polynomials, which unifies all the special known results for Hermite, Charlier, Laguerre, Meixner and MeixnerPollaczek polynomials. Furthermore, we give a new and explicit real version of the corresponding formula for Meixner-Pollaczek polynomials. Our proof is based on some explicit bijections and sign-reversing weigh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Computational Applied Mathematics
دوره 236 شماره
صفحات -
تاریخ انتشار 2011